Sebuah balok (massa m) bergerak dengan kelajuan awal νo di atas lantai licin. Sebuah batang homogen bermassa M ( M > m) dan panjangnya L tergantung dengan bebas pada langit-langit dan mula-mula diam (lihat gambar di bawah). Batang M ditumbuk oleh balok m tersebut.

Tepat setelah tumbukan, batang berayun dan balok diam.
a) Periksalah apakah kasus di atas termasuk tumbukan elastik atau tak-elastik.
b) Tentukan tinggi maksimum batang homogen berayun.
Tepat setelah tumbukan, batang berayun dan balok diam.
a) Periksalah apakah kasus di atas termasuk tumbukan elastik atau tak-elastik.
b) Tentukan tinggi maksimum batang homogen berayun.
Pembahasan
Pada kasus ini berlaku hukum kekekalan momentum angular. Dimana momentum angular (momentum sudut) adalah L = mvr atau L = Iω . Sebelum tumbukan momentum angularnya praktis dari balok saja, karena batang diam. Setelah tumbukan, balok diam sementara itu batang berputar dengan kecepatan sudut ω . Perhatikan gambar.

Dari teorema sumbu sejajar untuk mencari momen inersia batang akan didapat poros di ujung momen inersianya adalah 1/3 ML2. Dari kekekalan momentum sudut diperoleh kecepatan sudut batang setelah tumbukan.

Berikutnya periksa apakah Energi kinetik sebelum tumbukan dan setelah tumbukan tetap atau terjadi perubahan.

karena nilai (3m/M) lebih kecil dari 1, maka terlihat bahwa Ek’ lebih kecil dari Ek, artinya terdapat hilang energi kinetik, sehingga tumbukan bersifat tak-elastik.
Pada kasus ini berlaku hukum kekekalan momentum angular. Dimana momentum angular (momentum sudut) adalah L = mvr atau L = Iω . Sebelum tumbukan momentum angularnya praktis dari balok saja, karena batang diam. Setelah tumbukan, balok diam sementara itu batang berputar dengan kecepatan sudut ω . Perhatikan gambar.
Dari teorema sumbu sejajar untuk mencari momen inersia batang akan didapat poros di ujung momen inersianya adalah 1/3 ML2. Dari kekekalan momentum sudut diperoleh kecepatan sudut batang setelah tumbukan.
Berikutnya periksa apakah Energi kinetik sebelum tumbukan dan setelah tumbukan tetap atau terjadi perubahan.
karena nilai (3m/M) lebih kecil dari 1, maka terlihat bahwa Ek’ lebih kecil dari Ek, artinya terdapat hilang energi kinetik, sehingga tumbukan bersifat tak-elastik.
Sesaat setelah tumbukan energi kinetik yang dimiliki batang adalah Ek', dan saat berhenti sebelum kemudian berayun lagi ke bawah, energi ini telah diubah menjadi energi potensial untuk mencapai ketinggian h.

0 komentar:
Posting Komentar